The 39 references in paper D. Atyakshin A., Д. Атякшин А. (2018) “Гистохимические подходы к оценке участия тучных клеток в регуляции состояния волокнистого компонента межклеточного матрикса соединительной ткани кожи // Histochemical approaches to the evaluation of the participation of mast cells in the regulation of the fibrous component of the intercellular matrix of skin connective tissue” / spz:neicon:anatomy:y:2018:i:3:p:100-112

1
Атякшин Д. А., Бухвалов И. Б., Тиманн М. Гистохимия ферментов. Воронеж; 2017. 120.
(check this in PDF content)
2
Елисеев В. Г. Соединительная ткань: гистофизиологические очерки. М.: Медгиз; 1961. 461.
(check this in PDF content)
3
Коржевский Д. Э. Морфологическая диагностика. Подготовка материала для гистологического исследования и электронной микроско пии: руководство. СПб.; 2013. 127.
(check this in PDF content)
4
Лили Р. Патогистологическая техника и практическая гистохимия: пер. с англ. чл.-корр. АМН Португалова В.В., ред. М.: Мир; 1969. 845.
(check this in PDF content)
5
Омельяненко Н. П., Слуцкий Л. И. Соединительная ткань (гистофизиология и биохимия). Акад. РАН и РАМН Миронов С.П., ред. М.: Известия; 2009. 1: 380.
(check this in PDF content)
6
Пирс Э. Гистохимия. Теоретическая и практическая: пер. с англ. М.: Изд-во иностранной литературы, 1962. 962.
(check this in PDF content)
7
Саркисов Д. С., Перов Ю. Л. Микроскопическая техника: руководство. М.: Медицина; 1996. 544.
(check this in PDF content)
8
Серов В. В., Шехтер А. Б. Соединительная ткань (функциональная морфология и общая патология). М.: Медицина; 1981. 312.
(check this in PDF content)
9
Фукс Б. Б., Фукс Б. И. Очерки морфологии и гистохимии соединительной ткани. Л.: Медицина; 1968. 216.
(check this in PDF content)
10
Atiakshin D., Buchwalow I., Samoilova V., Tiemann M. Tryptase as a polyfunctional component of mast cells. Histochem Cell Biol. 2018; 149(5): 461–477.
(check this in PDF content)
11
Atiakshin D., Samoilova V., Buchwalow I., Boecker W., Tiemann M. Characterization of mast cell populations using different methods for their identification. Histochem Cell Biol. 2017; 147(6): 683–694.
(check this in PDF content)
12
Bancelin S., Decenciere E., Machairas V., Albert C., Coradin T., Schanne-Klein M. C., Aime C. Fibrillogenesis from nanosurfaces: multiphoton imaging and stereological analysis of collagen 3D self-assembly dynamics. Soft Matter. 2014; 10(35): 6651–6657.
(check this in PDF content)
13
Birk D. E., Fitch J. M., Babiarz J. P., Doane K. J., Linsenmayer T. F. Collagen fibrillogenesis in vitro: interaction of types I and V collagen regulates fibril diameter. J CellSci. 1990; 95(4): 649–657.
(check this in PDF content)
14
Bornstein P., Sage E. H. Matricellular proteins: extracellular modulators of cell function. Current opinion in cell biology. 2002; 14(5): 608–616.
(check this in PDF content)
15
Buchwalow I., Boecker W., Tiemann M. The contribution of Paul Ehrlich to histochemistry: a tribute on the occasion of the centenary of his death. Virchows Arch. 2015; 466: 111–116.
(check this in PDF content)
16
Byers P. H. Collagens: building blocks at the end of the development line. Clinical genetics. 2000; 58(4): 270–279.
(check this in PDF content)
17
Chen H., Xu Y., Yang G., Zhang Q., Huang X., Yu L., Dong X. Mast cell chymase promotes hypertrophic scar fibroblast proliferation and collagen synthesis by activating TGF-β1/Smads signaling pathway. ExpTher Med. 2017; 14(5): 4438–4442.
(check this in PDF content)
18
Conti P., Caraffa A., Mastrangelo F., Tettamanti L., Ronconi G., Frydas I., Kritas S. K., Theoharides T. C. Critical role of inflammatory mast cell in fibrosis: Potential therapeutic effect of IL-37. Cell Prolif. 2018: e12475. doi: 10.1111/cpr.12475.
(check this in PDF content)
19
Dwyer D. F., Barrett N. A., Austen K. F. Immunological Genome Project C: Expression profiling of constitutive mast cells reveals a unique identity within the immune system. Nat Immunol. 2016; 17: 878–887
(check this in PDF content)
20
Espinosa E., Valitutti S. New roles and controls of mast cells. Curr Opin Immunol. 2018; 50: 39–47.
(check this in PDF content)
21
Fibrosis: Methods and Protocols. Edited by Laure Rittie. 2017. 530.
(check this in PDF content)
22
Frossi B., Mion F., Sibilano R., Danelli L., Pucillo C. E. M. Is it time for a new classification of mast cells? What do we know about mast cell heterogeneity? Immunol Rev. 2018; 282(1): 35–46.
(check this in PDF content)
23
Galli S. J., Tsai M. Mast cells: versatile regulators of inflammation, tissue remodeling, host defense and homeostasis. J Dermatol Sci. 2008; 49: 7–19.
(check this in PDF content)
24
Ghazanfari S., Khademhosseini A., Smit T. H. Mechanisms of lamellar collagen formation in connective tissues. Biomaterials. 2016; 97: 74–84.
(check this in PDF content)
25
Harris J. R., Lewis R. J. The collagen type I segment long spacing (SLS) and fibrillar forms: Formation by ATP and sulphonated diazo dyes. Micron. 2016; 86: 36–47.
(check this in PDF content)
26
Hitchcock A. M., Yates K. E., Costello C. E., Zaia J. Comparative glycomics of connective tissue glycosaminoglycans. Proteomics. 2008; 8(7): 1384– 1397.
(check this in PDF content)
27
Hügle T. Beyond allergy: the role of mast cells in fibrosis. Swiss Med Wkly. 2014; 144: w13999. doi: 10.4414/smw.2014.13999.
(check this in PDF content)
28
Ina K., Kitamura H., Tatsukawa S., Miyazaki T., Abe H., Fujikura Y. Intracellular formation of collagen microfibrils in granulation tissue. ExpMolPathol. 2005; 79(3): 244–248.
(check this in PDF content)
29
Kulke M., Geist N., Friedrichs W., Langel W. Molecular dynamics simulations on networks of heparin and collagen. Proteins. 2017; 85(6): 1119– 1130.
(check this in PDF content)
30
Loerakker S., Obbink-Huizer C., Baaijens F. P. A physically motivated constitutive model for cellmediated compaction and collagen remodeling in soft tissues. Biomech Model Mechanobiol. 2014; 13(5): 985–1001.
(check this in PDF content)
31
Muldashev E. R., Muslimov S. A., Musina L. A., Nigmatullin R. T., Lebedeva A. I., Shangina O. R., Khasanov R. A. The role of macrophages in the tissues regeneration stimulated by the biomaterials. Cell Tissue Bank. 2005; 6(2): 99–107.
(check this in PDF content)
32
Olivera A., Beaven M. A., Metcalfe D. D. Mast cells signal their importance in health and disease. J Allergy ClinImmunol. 2018; 142(2): 381–393.
(check this in PDF content)
33
Overed-Sayer C., Rapley L., Mustelin T., Clarke D. L. Are mast cells instrumental for fibrotic diseases? Front Pharmacol. 2014; 4: 174.
(check this in PDF content)
34
Pincha N., Hajam E. Y., Badarinath K., Batta S. P. R., Masudi T., Dey R., Andreasen P., Kawakami T., Samuel R., George R., Danda D., Jacob P. M., Jamora C. PAI1 mediates fibroblastmast cell interactions in skin fibrosis. J Clin Invest. 2018; 128(5): 1807–1819. doi: 10.1172/JCI99088.
(check this in PDF content)
35
Redegeld F. A., Yu Y., Kumari S., Charles N., Blank U. Non-IgE mediated mast cell activation. Immunol Rev. 2018; 282(1): 87–113.
(check this in PDF content)
36
Robida P. A., Puzzovio P. G., Pahima H., LeviSchaffer F., Bochner B. S. Human eosinophils and mast cells: Birds of a feather flock together. Immunol Rev. 2018; 282(1): 151–167.
(check this in PDF content)
37
Ronnberg E., Melo F. R., Pejler G. Mast cell proteoglycans. J Histochem Cytochem. 2012; 60: 950–962
(check this in PDF content)
38
Wernersson S., Pejler G. Mast cell secretory granules: armed for battle. Nat Rev Immunol. 2014; 14: 478–494.
(check this in PDF content)
39
Wu K., Li G. Investigation of the Lag Phase of Collagen Fibrillogenesis Using Fluorescence Anisotropy. ApplSpectrosc. 2015; 69(10): 1121–1128.
(check this in PDF content)