The 10 linked references in paper A. Golubev E., A. Krishchenko P., А. Голубев Е., А. Крищенко П. (2016) “Решение терминальной задачи управления для аффинной системы при помощи многочленов // Polynomials-Based Terminal Control of Affine Systems” / spz:neicon:technomag:y:2015:i:2:p:101-114

  1. Kanatnikov A.N., Krishchenko A.P. Terminal control of spatial motion of flying vehicles. Izvestiya RAN. Teoriia i sistemy upravleniia, 2008, no. 5, pp. 51{64. (English version of journal: Journal of Computer and Systems Sciences International, 2008, vol. 47, no. 5, pp. 718{731. DOI:10.1134/S1064230708050055).
  2. Tang C.P., Miller P.T., Krovi V.N., Ryu J., Agrawal S.K. Differential-flatness-based planning and control of a wheeled mobile manipulator-theory and experiment.IEEE/ASME Trans. on Mechatronics, 2011, vol. 16, no. 4, pp. 768{773. DOI:10.1109/TMECH.2010.2066282
  3. Emel'yanov S.V., Krishchenko A.P., Fetisov D.A. Controllability research on affine systems. Doklady Akademii Nauk, 2013, vol. 449, no. 1, pp. 15{18. (English version of journal:Doklady Mathematics, 2013, vol. 87, iss. 2, pp. 245{248. DOI:10.1134/S1064562413020026).
  4. Krishchenko A.P., Fetisov D.A. Terminal control problem for affine systems.Differentsial'nye uravneniya, 2013, vol. 49, no. 11, pp. 1410{1420. (English version of journal:Differential Equations, 2013, vol. 49, iss. 11, pp. 1378{1388. DOI:10.1134/S0012266113110062).
  5. Kanatnikov A.N. Design of aircraft trajectories with non-monotonic change in energy.Nauka i obrazovanie MGTU im. N.E. Baumana=Science and Education of the Bauman MSTU, 2013, no. 4, pp. 107{122. DOI:10.7463/0413.0554666(in Russian).
  6. Fetisov D.A. Solving terminal control problems for affine systems.Nauka i obrazovanie MGTU im. N.E. Baumana=Science and Education of the Bauman MSTU, 2013, no. 10, pp. 123{136. DOI:10.7463/1013.0604151(in Russian).
  7. Perruquetti W., Floquet T., Orlov Y. Finite time stabilization of interconnected second order nonlinear systems.Proc. of the 42ndIEEE Conference on Decision and Control. Vol. 5. IEEE, 2003, pp. 4599{4604. DOI:10.1109/CDC.2003.1272284
  8. Cruz-Zavala E., Moreno J.A., Fridman L. Asymptotic stabilization in fixed time via sliding mode control.Proc. of the 51st Conference on Decision and Control (CDC). IEEE, 2012, pp. 6460{6465. DOI:10.1109/CDC.2012.6425999
  9. Polyakov A. Fixed-time stabilization of linear systems via sliding mode control.Proc. of the 12thWorkshop on Variable Structure Systems. IEEE, 2012, pp. 1{6. DOI:10.1109/VSS. 2012.6163469
  10. Polyakov A. Nonlinear feedback design for fixed-time stabilization of linear control systems.IEEE Trans. on Automatic Control, 2012, vol. 57, no. 8, pp. 2106{2110. DOI: 10.1109/TAC.2011.2179869